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1.0 INTRODUCTION

Computer professionals have long promoted the idea that graphical

representations of software are extremely useful as comprehension aids when used to

supplement textual descriptions and specifications of software, especially for large

complex systems. The general goal of this research is the study and formulation and

generation of graphical representations of algorithms, structures, and processes for Ada

(GRASP/Aria). The present task, in which we describe and categorize various graphical

representations that can be extracted or generated from source code, is focused on

reverse engineering.

Reverse engineering normally includes the processing of source code to extract

higher levels of abstraction for both data and processes. Our primary motivation for

reverse engineering is increased support for software reusability and software

maintenance, both of which should be greatly facilitated by automatically generating a

set of "formalized diagrams" to supplement the source code and other forms of existing

documentation. The overall goal of the GRASP/Ada project is to provide the

foundation for a CASE (computer-aided software engineering) environment in which

reverse engineering and forward engineering (development) are tightly coupled. In this

environment, the user may specify the software in a graphically-oriented language and

then automatically generate the corresponding Aria code [ADA83]. Alternatively, the

user may specify the software in Ada or Ada/PDL and then automatically generate the

graphical representations either dynamically as the code is entered or as a form of post-
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processing. Appendix A contains a comprehensive taxonomy of reverse engineering,

including definitions of terms.

Figure 1 shows the project divided into three phases, each of which corresponds

to one of the following broad categories of graphical representations: (1) algorithmic

(PDL/Code), (2) architectural, and (3) system level diagrams. Each of these categories

may contain overlapping entries that depict, for example, data structure, data flow, or

other useful relationships. Phase 1 of GRASP/Ada has been completed and a new

graphical notation, the Control Structure Diagram (CSD) for Ada and supporting

software tool is now being prepared for evaluation [CRO88, CRO89]. In Phase 2, the

focus is on a subset of Architectural Diagrams that can be generated automatically from

source code with the CSD included for completeness. These are described briefly in the

order that they might be generated in a typical reverse engineering scenario. Phase 3

is described briefly in the final section of this report, entitled "Future Work."

1.1 Algorithmic Diagrams (PDL/Code)

As the complexity of software has increased, so has the utility of graphical

representations for algorithms. The industry has progressed well beyond the simple

constructs of sequence, selection and iteration promoted by the theory of structured

programming in the 1970's. For example, Ada includes control constructs for

concurrency (tasks and task rendezvous), exception handling, and loop exits, none of

which fits well into the simple sequential control constructs of structured programming.

Since the ANSI flowchart was introduced in the mid-50's, numerous notations have been

proposed and utilized [MAR85, TRI89]. These notations typically include control
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Figure 1. GRASP/Ada Overview



constructs for sequence, selection, and iteration, and several include constructs for

concurrency and exits; however, none explicitly contains all of the control constructs

found in Ada.

For the GRASP/Ada project, the Control Structure Diagram was selected as a

basis for a graphical representation that maps directly to Ada control constructs. The

CSD is a graphical notation intended to increase the comprehensibility of Ada PDL or

source code by explicitly depicting control constructs and control flow. The traditional

textual representation of PDL or source code has been extended with intuitive graphical

constructs which are easily adaptable to editors and printers. The CSD has the

attractive property that it has the appearance of being overlaid directly on prettyprinted

Ada code. In fact, a CSD generator may be perceived as a "graphical prettyprinter."

Appendix B contains a paper, entitled "Control Structure Diagrams For Ada," which

describes and illustrates the CSD graphical constructs.

1.2 Architectural Charts and Diagrams

The next level of diagrams in the reverse engineering process is a group

commonly known as architectural diagrams. Structure charts, data structure diagrams,

and entity-relationship diagrams are traditional examples of these. The object/package

diagram is a relatively recent addition at this level. Structure charts, object/package

diagrams, and a collapsed version of the control structure diagram have been targeted

for prototyping in Phase 2. Structure charts and object/package are each discussed

briefly below in the context of automatically generating the diagram from source code

or PDL. Structure charts are one of the oldest and potentially most useful diagramming

4



notations available. We use the term here in the generic senseto refer to those charts

and diagrams that depict the overall hierarchical organization of a software system

without concern for the algorithmic details. In this sense,the structure chart is simply

an invocation graph of functions and procedures in which redundant calls are omitted.

IBM's HIPO, and Yourdon's structure chart are common examples in this category.

Someversions indicate data items along the control lines between procedures to show

data flow as well as limited detailed control flow information such as selection and

iteration.

The structure chart offers the user a high-level solution-oriented view of the

software. Although algorithmic details are suppressed, the user can still get a sense of

what is going on from the perspective of solving the problem as well as a feel for the

layers of procedures and functions involved. Unfortunately, structure charts generated

during initial development of a system are rarely kept current without the aid of a

CASE tool which links the diagram and corresponding code. A major role of reverse

engineering in a CASE environment is to ensure the availability of an accurate set of

structure charts as well as graphical representations for other software views such as

algorithmic and data flow.

Automatic generation of structure charts from source code is relatively

straightforward. In the case of Ada, the abstract syntax tree built during the parse must

be traversed, capturing procedure and function calls (a task rendezvous has the

appearance of a procedure call). A call to a procedure or function results in the

traversal of its abstract syntax tree. Redundant calls from a single procedure are

normally captured but not displayed. Data items and their direction of flow are
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identified syntactically by their IN, OUT, or INOUT designation in the parameter list.

Additional program analysis is required to determine references to non-local variables

that are not formal parameters.

The Object�package diagram made popular by Booch is a recent architectural

level diagram that is useful for object-oriented software [BOO83, BOO86, BOO87a,

BOO87b]. The object/package diagram shows all of the dependencies among packages

and package components. This is an important view of the software with respect to its

construction or composition from parts. For example, an Ada package may be used for

encapsulation of types and operations to form abstract data types. These packages can

then be considered objects from an object-oriented development perspective.

Object/package diagrams are generated from a syntactical analysis of the Ada

source code. The basic dependencies are defined by the WITH clause. The actual

package components that are utilized are determined by references to types, procedures

and/or functions exported by the package. These objects or packages can be further

graphically encoded by using icons, shading, and coloring.

Preliminary analysis has revealed that structure charts and object/package

diagrams are complementary in nature and, furthermore, that in isolation each affords

a somewhat incomplete view of the software. The hierarchical or layered structure

chart is easily related to the software solution of the problem. That is, a reader can

discern "what" is being done with respect to solving the problem or, from a reverse

engineering perspective, which problem is being solved. The object/package diagram,

on the other hand, offers a view of component packaging (e.g., how data and

operations are packaged into objects). While Booch points out that the object/package
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diagram is much closer to the data flow diagram of the general specification of the

problem (e.g., external entities and data stores become objects)flit has been our

experience that the dependencies shown in the object/package diagram provide little or

no information regarding the interaction of the objects and operations. The structure

chart and ultimately the control structure diagram do supply the additional information

necessary for complete comprehension of the solution.

The remainder of this report is organized as follows. Section 2 discusses

architectural diagrams that are currently in use, a brief review of efforts to extract

architectural diagrams from source code and provides a summary of several general

trends in visualizations in computing. Section 3 provides a discussion of the problem

Phase 2 of the GRASP/Ada project is addressing. Section 4 provides a statement of

requirements and a description of the prototype that is currently being developed to

support the automatic generation graphical representations from Ada source code.

These requirements include functional, interface, hardware, and system software.

Section 5 provides an overview of Phase 3 of GRASP/Ada.
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2.0 ARCHITECTURAL DIAGRAMS IN CURRENT USE

In this section, the term "architectural diagram" and other related terms are

defined. This is followed by a brief survey of recent as well as traditional architectural

diagrams which have been used for Ada. The specific needs for architectural diagrams

for Ada software are examined. This section concludes with a brief discussion of trends

in visualization for computing in general.

2.1 Definitions

An architectural diagram (AD) may be defined as follows: a graphical

representation of the logical components of a software system, the interfaces between

such components, and the hierarchical relationship among the components.

Logical components of a software system are those structures which group

statements and components into cohesive units. In Ada, these structures include the

package, procedure, function, and task. Most well-designed logical components are

functionally cohesive, each providing a single and specific service.

The interfaces between the logical components of a software system show the

invocation convention for communicating between components, including any parameters

which are passed. Although in the simplest case there may be no parameters passed

between a given set of components, usually parameters consist of items of complex types

and, in the case of Ada, may even include tasks.
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The hierarchical relationship among the logical components of a software system

is shown as a utilization hierarchy. A _'onnection between any two components

represents a resource usage of one component by the other.

Two other terms that are of use when referring to hierarchical diagrams are

visibility and connectivity. Each is a term referring to the scope of a given software

component. Visibility refers to the set of components that may be invoked by a given

component, regardless of whether the code actually specifies an invocation of such

components. Connectivity refers to the set of components that are explicitly invoked

by a given software component in the source program.

2.2 Graphical Representations for Architecture

In this section, several architectural diagrams currently in use are briefly

discussed. This is followed by a brief review of representative efforts to extract

architectural diagrams and related information from source code.

2.2.1 Common Architectural Diagrams

Perhaps the best-known architectural diagram is the traditional structure chart

made popular by Yourdon and Constantine (see Figure 2). This diagram represents the

architecture of a system using a set of boxes representing functions and procedures

connected by lines indicating invocation. Small arrows are arranged along the lines of

invocation to depict the flow of data between the modules. Typically, data flows are of

two types: "pure" data items, which may be either simple or complex data types, and

control data items, which are used to determine the execution of the invoked procedure.

9
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Although the traditional structure chart is useful for depicting the architecture of

systemswritten in s_mplelanguagessuchas Pascal,it lacks in the capability to represent

advancedfeatures found in Ada suchastasking and generic instantiation of procedures

from templates.

CAEDE (Carleton Embedded SystemDesign Environment) is a software CAD

system developed at Carleton University by Buhr [BUH89] that uses modified Buhr

diagrams to represent the architecture of an Ada program (see Figure 3). The

structural CAEDE diagrams are block-oriented and include distinct symbols for tasks,

packages, and procedures. Although the CAEDE system does include graphical

representations for all of the Ada architectural components, it does not represent

generics well. In addition, the nesting required to produce an accurate CAEDE

diagram for a typical Ada program can become cumbersome. At this time, there is no

existing tool for generating CAEDE diagrams from existing code.

OOSD (Object-Oriented Structured Design), developed by Wasserman [WAS89],

is a method for designing the architecture of systems. The heart of OOSD is the OOSD

design chart, a modified structure chart, that describes a set of architectural components,

their invocation hierarchy, and the parameters passed among them (see Figure 4). At

a lower level, information clusters provide an object-oriented description of the

components depicted on the design chart. Because OOSD is designed to be language-

independent, it does not correspond exactly to Ada, and therefore does not directly

support all Ada features, especially the tasking constructs. On the other hand, OOSD

does allow the designer to utilize some features that Ada does not provide. At this

time, there is no existing tool for generating OOSD diagrams from existing code.
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Hamilton Technologies,Inc., hasdevelopedan integrated hierarchical, functional

and object-oriented modeling approach collectively called 001 technology. The 001

technology is based, in part, on USE.IT developedby Higher Order Software (HOS)

[HAM79]. In 001,a systemis defined in terms of a singlecontrol map which integrates

both function control maps (FMaps) and type control maps (TMaps), where an FMap

defines a hierarchy of functions and a TMap defines a hierarchy of abstract types. The

underlying specification language for these maps is 001 AXES, which is based on a set

of control axioms derived from empirical data gathered during the development and

operation of the existence of a universal set of objects. The leaves of the maps

represent primitives implemented in a language for a particular native computer

environment. When a system specified in 001 AXES is processed by the "Resource

Allocation Tool," the result is a complete system in the source language of the

primitives.

I_AMELA (Process Abstraction Method for Embedded Large Applications) is a

methodology developed by

environment on the IBM PC.

Cherry [CHE86] and supported by the AdaGRAPH

A specification is written in PAMELA by first describing

a system as a collection of flow diagrams. Next, the analyst is prompted to answer

certain questions about each of the processes in the flow diagrams, resulting in

corresponding annotations to the diagrams. Finally, the analyst completes the skeleton

code generated from the flow diagrams by filling in the algorithmic details which can not

be generated from the diagrams. It is interesting to note that the "automatic code

generation" provided by PAMELA falls mainly into the area of providing correctly

specified modules and communications between these modules. Generating procedural

14



code is left to the analyst, although the AdaGRAPH environment does provide facilities

for simplifying this.

IORL (Input�Output Requirements Language) is a high-level requirements

language developed for the design of real-time embedded systems with the TAGS

(Technology for the Automated Generation of Systems) methodology [SIE85]. TAGS

embodies the hierarchical top-down development of a system, and relies upon graphical

representations to present control flow within a process and data flow among different

processes executing simultaneously (see Figure 5). A system may be viewed at any time

from a number of levels: from a very high level showing an overview of the entire

system, from a very low level showing the IORL primitives that make up a process, or

from any level in between. The latest release of IORL utilizes an icon-oriented

interface for the easy creation of IORL diagrams. Currently, Teledyne Brown

Engineering is working on a "Simulation Compiler" which will significantly enhance the

TAGS development environment by facilitating simulated execution of the IORL

specification.

Booch diagrams [BOO83] provide a graphical representation of the architectural

components of Ada along with some dependency information (see Figure 6).

Experience indicates that the graphical representation of large systems using Booch

diagrams often leads to a network decomposition rather than a strict hierarchical control

organization. In addition, at the present time, only primitive tools exist for the

extraction of Booch diagrams from Ada source code.
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2.2.2 Extraction of Architectural Diagrams from Source Code

Numerous efforts to generate architectural diagrams and related information can

be found in the literature. Most CASE tool vendors (e.g., those cited in the previous

section) are attempting to develop reverse engineering capabilities which will enable the

user to redocument existing software using their systems. Several other research efforts

which are representative of those currently underway are briefly described below.

Choi and Scacchi at the University of South California have developed a module

interconnection language called NuMIL from which hierarchical diagrams may be

extracted [CHO90]. A NuMIL description of the source code is generated, and this

description is analyzed in terms of resource flow among the various modules in the

system, where resources include data types, procedures, and variables. Application of

a restructuring algorithm then provides a hierarchical description of the system. It is

interesting to note that the USC approach tends to focus on the extraction of the

structm:al design and not its presentation. The graphical representation of the extracted

information has not been addressed.

ARCH is a system developed by Schwanke et. al. of Siemens Corporate

Research, Inc., to extract and display the structure of C programs [SCH89]. It uses a

many-to-one mapping from the target program to a structure chart to abstract a large

system into a form that may be easier to understand. The basis of the mapping is the

data used by the various procedures in the target program: modules which operate on

common data are assumed to be related and are grouped in subsystems. As with the

NuMIL project at USC, the ARCH project has tended to focus more on the extraction

and not the presentation of a system's structure.
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DESIRE is a prototype of a design recovery tool developed by Biggerstaff of the

Microelectronics and Computer Technology Corporation that analyzes a C program and

produces a web that displays the relationships between the program's data and modules

[BIG89]. The web is presented using a hypertext system, and the program structure is

represented by links among the module names. The web is not hierarchical and does

not make use of any graphical representations, nor does it depict the data flow passed

between modules.

PathMap is an analysis tool developed by O'Brien of the Microcase Division of

Cadre Technologies that works with Cadre's Teamwork/SD to produce annotated

Constantine structure charts with information about the target program's runtime

performance [OBR89]. The runtime data includes a count of the number of times the

program was invoked and the percentage of CPU time it consumed. These items are

represented in much the same way on the structure chart as parameters that are passed

among l_odules. Other than this, PathMap provides no other graphical extensions or

modifications to the Constantine structure chart.

2.3 Architectural Diagrams for Ada

Components of the Ada programming language that must be considered when

developing architectural diagrams are examined below. This is followed by a discussion

of special issues pertaining to the Ada programming language that must be considered

during the development of any practical architectural diagram for Ada.
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2.3.1 Architectural Components of Ada

Most high level programming languages have very few architectural components.

For example, Pascal has only procedures, functions, and a single main program.

However, Ada is much more complex, with constructs that are difficult to represent

using traditional architectural diagrams. In this section, the architectural components

of the Ada programming language are examined.

The architectural components of Ada may be subdivided into two categories:

logical and physical. The logical components are those structures defined within the

language that serve to group sets of logically related statements or componen!s. The

physical components are those components which serve more to assist the Ada compiler

rather than the Ada programmer.

There are five logical components in the Ada programming language: packages,

procedures, functions, tasks, and operators. Packages are structures which serve to

group ti_e other logical components into cohesive modules. Procedures, functions, and

tasks are much alike in that they are small threads of executable code that generally

provide a single specific service. Operators may be considered a special case of function

that may take one or two arguments. Although operators are predefined in most

programming languages, Ada allows them to be overloaded.

There are three physical components in the Ada programming language: library

units, secondary units, and subunits. A library unit is a specification that defines a set

of logical components and data declarations. A secondary unit is the body of code that

implements each of the logical components defined in the corresponding library unit.
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Finally, a subunit is a section of code that implements a logical component defined in

a library unit but may be compiled separately.

In addition, the logical components may have properties associated with them.

For example, a logical component may be a standard component, with all its data types

explicitly defined. Or, it may be a generic component that may be instantiated for a

given data type. Another property that logical components in Ada exhibit is that of

visibility. A logical component may be visible, and accessible to any other component

that refers to it, or it may be hidden, only accessible by other components in its

package.

2.3.2 Special Issues

In this section, _some of the special issues which must be addressed in the

development of a set of architectural diagrams for Ada are discussed.

Representation of generics. The generic construct in the Ada language allows the

definition of "templates" for software functions which describe a function's logic without

making any commitments to data types. The generics may be easily instantiated to

operate on any set of data types. In an architectural diagram, these functions would

appear in many places as distinct functions, although they differ only in the data types

on which they operate. Some method for capturing this similarity in the architectural

diagram should be developed.

Representation of overloading. Ada allows a number of simple operators to be

"overloaded." This is similar in respect to the notion of generic functions in that the

only difference between functions is the set of data types on which they operate.
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Representation

invocation

execution.

graphical depiction has not been well investigated.

Representation of "static" vs. "dynamic" scope.

of tasking. Architectural diagrams generally represent the

hierarchy among a set of procedures for a single thread of program

Ada introduces the concept of tasking, or simultaneous execution, whose

In most high level languages, all of

the components of a software system "exist" for the duration of the system's execution;

this may be referred to as "static" scope. In Ada, however, components may exist only

for portions of the system's lifetime, due to tasking and to the ability to embed

components inside others; this may be referred to as "dynamic" scope. Some method

for representing these on an architectural diagram must be developed.

Representation of scope of private functions and procedures. Ada allows packages

to have private functions and procedures which are visible only to other functions and

procedures in that package. There are no provisions for showing this in traditional

archite_ural diagrams.

Representation ofrecursion. Ada, like most other high level procedural languages,

supports both direct and indirect recursion. The simple methods for depicting this on

a structure chart, which have been used in conjunction with other languages, may suffice

until a representation more suitable for Ada is devised.

Representation of functions passed as parameters. Ada allows functions to be

passed as parameters in the instantiation of generics. Traditional architectural diagrams

have no means for showing components passed as parameters in an invocation.

Representation of embedded packages and tasks. Ada allows packages, procedures

and tasks to be declared anywhere in a program that variables and data types may be

22
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declared. As a result, procedures with a dynamic lifetime may be declared that are

callable by the component in which they are embedded but only for the scope of their

declaration. There is no convention for showing this on an architectural diagram.

Representation of physical components of software. Traditionally, architectural

diagrams show only the logical architecture of software and ignore the physical

architecture. The "packaging" of most large systems is critical to the success of the

system from both the developmental and maintenance perspectives.

Representation of architecture using layers. As the needs of software systems

become more and more complex, the size of such systems has grown dramatically, often

beyond the point where a single person could readily understand the inner workings of

the systems. To render these systems more presentable to the software engineer, it is

necessary to develop some method for layering the architecture of the system so that

it may be presented in successive degrees of abstraction.

_epresentation of all Ada-specific components. For an architectural diagram for

Ada to be practical, it must represent all of the architectural components of the Ada

programming language.

Representation of visibility and connectivity. To assist

programmer, visibility and connectivity must be represented on

diagram.

the maintenance

the architectural

2.4 Visual Computing Trends

In this section, current trends in visualization in computing are presented. While

much of the discussion focuses on visual programming, the ideas are relevant to all
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phases or levels of graphical representations. Although relatively new to the automation

environment, visual programming techniques provide an effective *as well as versatile

means to perform a wide spectrum of analysis and design functions. It has been

observed that the use of graphical representations to model, design, and evaluate

complex programming processes greatly enhances the ability of the user to understand

the process in question [SHU88, AMB89]. This concept of allowing a user to visualize

information in a form other than textual is being utilized in numerous areas. The

graphical representation of complex or enormous quantities of information is currently

being employed in the fields of data design, program design, program execution analysis,

software engineering, and visual programming languages.

The use of visual representations has evolved far beyond the simple mapping of

textual data to that of a graphical representation. In fact, new developments in the field

are leading to systems and environments that are graphically oriented by nature. Visual

user infe..rfaees modelled after a paradigm of overlapping windows, such as those found

in Smalltalk, provide multiple views of a common internal database. Whenever any

portion of the data is changed, all relevant views are updated to reflect that change.

Graphically oriented language environments include Pecan, Cedar, and Software through

Pictures [AMB89, FOR88].

Visual editing provides the user with the capability to modify existing programs

or produce new ones through the use of templates that correctly reflect the language's

syntax. Such current systems include the Cornell Program Synthesizer editor and the

Aloe editor used in Gandalf. Several other graphical editors enforce logical consistency
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through the addition of rules regarding the structure of a program. Higher Order

Software's Use.It and PegaSys are examples of systems that use this technique lAMB89].

The utilization of visual technology to edit programs written in traditional

languages has been joined by a new philosophy of programming paradigms under a

category referred to as "naturally visual languages" [AMB89]. Under these language

environments the basic language constructs are visual rather than textual. A variety of

approaches are used in such languages. The application of dataflow, constraints, form-

based and program-by-demonstration paradigms serve as the bases for environment

supported languages such as ThinkLab, ThinkPad, and Rehearsal World lAMB89].

Somewhere between the visual programming language and the textual languages

one finds Conic. This programming environment uses a combination of text and

graphics to define "configurations" that collectively make up a program [KRA89]. It

focuses on the functionality of processes, their control characteristics, and

commui_ication interaction.

Although much emphasis has been placed on the role visual programming plays

in user interfaces, editors, and programming languages, its potential far exceeds this

scope. As stated above, the use of graphical representations has showed itself to be

extremely useful in any area that inherently has large quantities of complex information.

Two such applications utilizing visual techniques as a means to better understand actual

events include performance debugging, specifically in regard to multiprocessor systems,

and concurrent computations [LEH89, ROM89].

Carnegie Mellon University has demonstrated the usefulness of visualization

through its special software development environment known as the Parallel
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Programming and Instrumentation Environment or PIE. This system is designed to

develop performance-efficient parallel andasequentialcomputationsby mapping parallel

applications onto specific architectures, gathering data as the applications execute and

producing graphical representations that reflect selected characteristics of the actual

execution [LEH89].

The visualization of concurrent computations employs visual abstraction by

"mapping from computational statesto the states of graphical objects" [ROM89]. This

approach hasbeen usedto insure the correctnessof a process,consistencyin execution

and .progressin the computation of a solution.

Visualization of programming hasbeen demonstrated to be an effective means

of representing complex processes,data structures, and computational events. The

primary element that makes each of the systemsexamined above viable is its well

defined utilization of graphical representationswithin the context of its application.

-g.. --
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3.0 STATEMENT OF THE PROBLEM

In this section, the overall direction for the GRASP/Ada Phase 2 prototype is

presented. First, the goals and objectives for the prototype are briefly discussed. Finally,

the tentative architectural diagrams for Ada are introduced.

3.1 Overview

In Phase 1 of the GRASP/Ada project, the focus was on the algorithmic

representation of Ada programs and the CSD (Control Structure Diagram) was

developed to graphically depict Ada control constructs. In Phase 2, the focus was shifted

to the structural (or architectural) view of Ada, and new diagrams must be developed

to represent this view. Although one diagram (the CSD) was sufficient to represent the

algorith_nic-;ciew of Ada, multiple diagrams are needed to adequately represent the

structural view of the software architecture.

3.2 Introduction of Taxonomy

To assist in the development of a layered approach to the graphical depiction of

Ada, a tentative taxonomy of graphical representations has been developed. This

taxonomy defines five distinct views of Ada software: the code view, the algorithmic view,

the connectivity view, the visibility view, and the logically related view (see Figure 7).

The code view is the base view of Ada software, consisting of the source code

itself. This code may be optionally augmented with some additional information such
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Figure 7. Taxonomy of Architectural Graphical Representions
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as line numbers, nesting data, and a cross-reference, but its low-level nature renders it

difficult for the software engineer to quickly comprehend the code.

The algorithmic view of Ada is intended to enhance the code view by graphically

representing control structures. The CSD developed in Phase 1 of the GRASP/Ada

project serves this purpose by augmenting Ada code with small iconic representations

of the various control structures. These graphics are embedded in the code in the area

normally used for "white space," and thus coexist with the code without requiring

significant spatial reorganization.

Phase 2 of the GRASP/Ada project is focused on the connectivity view and the

visibility view of Ada. The connectivity view shows the architectural components of an

Ada system with their invocation hierarchy and associated parameters. This view is

most like the traditional structure chart, yet has been enhanced and represented by two

distinct graphical representations in the GRASP/Ada system. The first is the Level 1

architectural diagram which consists of a "collapsed" CSD that shows the architectural

components and the control logic that leads to the statements that show each of the

components being invoked. The second graphical representation is the Level 2

architectural diagram that utilizes a traditional structure chart with appropriate

modifications and extensions for Ada.

The visibility view of Ada represents a set of architectural components and their

associated scopes, both static and dynamic. Whereas the connectivity view shows which

component are explicitly called (or invoked) by other components, the visibility view

shows which components may be invoked by other components. This view also denotes
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the dependency relations among Ada software components, and will be graphically

represented using modified Booch diagrams.

The logically related view of Ada will be the focus of the proposed Phase 3 of the

GRASP/Ada project. This view shows the data flow among logically related groups of

software architectural components, and may be considered an abstraction of the visibility

view. Although the proposed GRASP/Ada graphical representations for this view have

not yet been fully developed, they will include a set of modified data flow diagrams and

tasking diagrams.

3.3 Derivation of Base Set of Architectural Diagrams

In this section, the tentative base set of architectural diagrams for Phase 2 of the

GRASP/Ada project are described. There are three proposed graphical representations

for this phase: the Level 1 architectural diagram, the Level 2 architectural diagram, and

the Lex_'..l 3-architectural diagram.

3.3.1 Level 1 Architectural Diagram

The Level 1 architectural diagram bears a close resemblance to the CSD used

for representing algorithmic details. Figure 8 contains source code for procedure Solve

which uses package Stack_Package to calculate the result of an expression read in as

a character line. Figures 9 and 10 show two of several alternatives under consideration

for the Level 1 architectural diagram. This graphical representation is designed to

incorporate the features of the detailed level CSD as depicted in GRASP/Ada, and

those of the traditional structure chart to derive a diagram called the architectural CSD
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-- This program is designed to read a single line
-- of character input and evaluate its value as a simple

-- equation.

-- An example input would be: ((I + 7)*((4 - I)*(3 * 8)))
-- With a result of 432

WITH Text_IO, Stack_Package;

PROCEDURE Solve IS

PACKAGE Type_Integer_lO IS NEW Integer_IO (Integer);

PACKAGE Character_Literal_IO IS
NEW Enumeration_IO (Character);

X,Y,Z : CHARACTER;
Result,A,B : REAL;
Operand : Number_Stack_Type;
Operator : Char Stack Type;
Input_File, Output_File : File_Type;

BEGIN

Open (Input_File, In_file, "Input_Expression In");
Create (Output File, Out_File, "Results. Out" ;

Create_Character_Stack ( Operator );

Create_Number_Stack ( Operand );
Get (Input_File, X);
WHILE NOT End of line (Input_File) LOOP

CASE X IS
WHEN '1';'2'1'3';'4';'6'1'7';'8';'9' '0' =>

Convert(X, Result);
Push (Result, Operand);

WHEN '+'','-' ','*' =>

Push (X, Operator);
WHEN ' ) ' = >

IF Not_Empty (Operator) THEN
Pop (X, Operator);

END IF ;
IF Not_Empty (Operand) Then

Pop (A, Operand);
END IF;

IF Not Empty (Operand) Then

Pop (B, Operand);
END IF;

WHEN OTHERS => NULL;
END CASE ;

Execute (Result, X, A, B);
Push (Result, Operand);

Get (Input_File, X);

END LOOP;

Put (Output_File, Results, O, IO);
END Solve;

Figure 8. Ada Source Code For Procedure Solve
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PROCEDURE Solve IS

Create_Char_Stack (Operator);

Create_Number_Stack (Operand);

WHILE NOT End of File (Input_File) LOOP

CASE X I S

WHEN 'I'''2'''3'''4'''5_''6'''7'''9'''0''>___

[ Convert (X, Result) ;

_ PUSH(Result, Operand) ;

WHEN '+' I'-' I'*' I ">

i _ PUSH(X,Operator );

I
I

_I I; N0t_Empty (operator) THEN

I Pop(A,Operator)

F Not_Empty (Operand) Then;

Pop (B, Operand) ;

[ IS Not_Empty (operand)

Pop (Z, operand) ;

Then;

_ Execute (Results,X,A,B);

_ Push (Results,Operand);

Figure 9. Architectural CSD With Conditions
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PROCEDURE Solve IS

-- Create Char Stack (Operator);

Create_Number_Stack (Operand);

m

Convert (X, Result) ;

PUSH (Result, Operand) ;

i PUSH (X, Operator ) ;
I

!
i

_F Not_Empty (operator)

THEN

"PVp (A--_erat or)

F Not_Empty (Operand) Then;j , eran );

I IF Not_Empty (Operand) Then;

Pop (Z, Operand) ;

--_ Execute (Results,X,A,B);

--_ Push (Results,Operand) :

Figure 10. Architectural CSD Without Conditions

33



or ArchCSD, which represents an intermediate level of abstraction. This collapsed

version of the CSD is expected to provide a compact visualization of the architectural

aspects of the software while preserving the essential control characteristics. Not only

will it show the architectural components which it includes, but it will also display the

invocations of these components, and the control logic leading to those invocations.

As stated earlier, the two graphical representations of particular interest to this

research are the traditional structure chart and the control structure diagram. The

structure chart was first made popular by Yourdon and Constantine. They represented

a system's basic architecture through the linking of boxes. Each box represents a

module such as a function or procedure. These diagrams were able to show data flow

to a limited extent. The structure chart does have limitations in that, in practice, it

generally does not attempt to address the details of control flow leading to invocation

of a module. Specific details regarding the sequence of processes, their conditional

selectio_ or the number of times they are called are not explicitly included

[PRE87,MAR85]. Although efforts have been made to represent this information

through structure charts augmented with additional symbology, such representations

have difficulty representing complex programs with procedural invocations that are

nested in sophisticated conditional constructs. In certain cases, the conditions leading

to a procedural invocation may itself involve multiple function calls.

More recent CASE tools have found that this type of representation is critical

in the forward design process. The developers of HIPO II (Hierarchy plus Input-

Process-Output), for example, realized the need for such information and incorporated

control flow directly into their hierarchy chart [ROE90]. Previous experiences with the
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original HIPO indicated that control information was critical to the user's ability to

communicatean overviewof the programsfunction. One of the observeddisadvantages

to the HIPO II implementation is its non-distinct symbology. Its main graphical

constructs are limited to single and double lines and two text symbols to represent

control flow. Although this may be adequate in forward design, more information is

needed in reverseengineering.

Ada.

This is particularly true with complex languages such as

The CSD, in contrast, uses a distinct graphical symbol for each major control

flow construct, and had ease of automation as a central design objective. The successful

implementation of the CSD tool for a large high-level language such as Ada tends to

support this claim regarding ease of automation.

Although the CSD was designed to depict control flow at all levels of program

abstraction, it is also suitable for use during detailed design as an extension to

pseudo_ode-or PDL. Designed with the primary purpose of reducing the time required

for program comprehension, it is a natural tool for reverse engineering [CRO88]. In

addition, it provides a sound basis for developing an architectural diagram which elides

much of the detail found in the CSD.

The Level 1 architectural diagram may be obtained using the same technique

utilized in the CSD generator developed in Phase 1 of the GRASP/Ada project.

Although the implementation of such a diagram presents some new problems with

respect to the traditional scan and parse approach to CSD prettyprinting, initial research

shows that the generation of such a graphical representation from source code is
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possible. In fact analysis indicates that the generation can occur with the time

complexity of O(N), where N is the number of statements in the source code.

It is important to note that this proposed tool is not designedto replace any of

the architectural representationscurrently in use. The ArchCSD is a supplemental view

of a program that depicts information that previously was omitted from traditional

architectural diagrams, implicitly included, or only obtainable at the source code level.

The availability of this diagram should aid implementation and maintenance

programmers to better understand the role of different modules within the a system.

With the ever increasingsizeand complexity of programs,the ArchCSD should provide

valuable insight.

3.3.2 Level 2 Architectural Diagram

The Level 2 architectural diagram may be thought of asan extensivelymodified

structut;tLclrart that has been customized for Ada. The diagram consistsof two parts:

a set of modules,which define Ada architectural componentssuch as procedures and

functions, and a set of control/data links, which define the invocation hierarchy among

the componentsand the data passedamong them (see Figure 11).

Modules are depicted using a compartmented box, with each Ada procedure,

function, task and overloaded operator mapping into distinct boxes. The upper

compartment is usedto indicate the overall flow of items in and out of the module. An

IN indicator shows that all of the parameters passed to the module are of type IN. An

OUT indicator shows that all of the parameters passed to the module are of type OUT.

An IN/OUT indicator shows that the parameters passed to the module may be of type
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IN, OUT, or IN/OUT. Finally, a null indicator shows that the module has no

parameters. Note that the graphical nature of the indicator allows the software

engineer to quickly determine the overall flow of data within a program's architecture.

The second and third compartments in the modules indicate the logical and

physical names associatedwith the module. The logical name showsthe name of the

logical structure (usually a package) in which the module is directly embedded, if such

a structure exists. The physical name shows the name of the file containing the

specification for the module. With these two pieces of information, the software

engineercaneasilydetermine wherea particular module fits into the logical architecture

of a systemas well as find the code associatedwith the module.

The fourth compartment in the modules indicates the name of the software

architectural component. This name may correspond to either a procedure, a function,

a task,_r an overloaded operator.

The data in the fifth compartment in the module will not be automatically

generated,but will allow the softwareengineerto customizea reverseengineeredsystem

for ready visual reference. The engineer may define an icon for each package in a

systemthat can be included in the architectural diagrams. For example, a stack icon

might be created to visually set apart thosemoduleswhich are part of a stack package.

The sixth compartment in the modules indicates the type of coupling that the

module shares with the component that invoked it. Although determining formal

coupling as defined by Myers is a difficult problem, there have been attempts at

determining coupling using program metrics. It is this approach that the GRASP/Ada
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project will take in determining the degree of coupling among software architectural

components.

The inclusion of an arrowhead on the right side of a module indicates that the

module exhibits side effects. Typically, this pinpoints the use of a data item or data

structure that was not declared within the module or passed to it. Although well-

designed systems refrain from using this approach whenever possible, it does frequently

occur in practice and can lead to frustration when trying to understand a complex

system.

The last compartment in the modules is used to indicate a generic instantiation.

If the module was instantiated from a generic template, the data types used to

instantiate the module are listed along the left edge. In this way, identical modules that

operate on distinct data types may be easily distinguished in the architectural diagram.

Control/data links are shown using a solid line in most cases. However, when

one of t_e two components in an invocation is a task, a dashed line is used to indicate

a rendezvous is in progress. This suggests that a task rendezvous is similar to a

procedure call, which is a reasonable analogy. A procedure call might be thought of as

a task rendezvous where the task that initiated the rendezvous suspends execution until

the task with which it rendezvoused completes the associated accept. An example of

a Level 2 architectural diagram for a stack package is shown in Figure 12.

3.3.3 Level 3 Architectural Diagram

The Level 3 architectural diagrams will show the visibility view of Ada rather

than the connectivity view exhibited by the Level 1 and 2 diagrams. Although the
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diagrams are still under development at this time, they will be based upon the Booch

diagram and will convey the dependencyinformation that the Booch diagrams exhibit,

while extending the diagrams to more fully suit Ada and customizing them for inclusion

in the GRASP/Ada system. Currently, the Object-Oriented Structured Design (OOSD)

notation, briefly describedin Section2, is a seriouscontender for the GRASP/Ada Level

3 diagram component. Since it has been widely distributed and is non-proprietary, it

has the potential to become the defacto standard.
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4.0 REQUIREMEaNr_ AND PROTOTYPE IMPLEMENTATION

The prototype tool in Phase 2 of GRASP/Ada is a reverse engineering tool for

automatically deriving graphical representations of Ada source code. Graphical

representations include the Control Structure Diagram for depicting control flow and

various hierarchical diagrams.

addressed:

The following hierarchical diagrams are currently being

Subprogram invocation graphs

Package/compilation unit dependency diagrams

The current focus has been on the subprogram invocation graph, commonly known as

the structure chart.

During Phase 2, several Ada development tools were considered and evaluated

as foundations on which to base the GRASP/Ada tool. Among those examined were

two compder-based Ada development systems, namely the VERDIX Ada Development

System (VADS) and Telesoft Ada development system. Of special interest were the

library management and product consistency facilities and the availability of the

intermediate representations. The VADS system was selected primarily due to the

availability of its interface to the DIANA intermediate representation, a representation

whose study had already consumed much time and effort.

The Software through Pictures CASE tool from Interactive Development

Environments is currently being evaluated with respect to its object-oriented structured

design (OOSD) notation. Early impressions suggest that the OOSD symbology is a

comprehensive synthesis of all the design representations available. However, further
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evaluation is required regarding the symbology's suitability to real-world examples,

amenability to reverse engineering,availability of graphical formats, and implications of

integration with the Software through Pictures tool.

Many of the requirements described herein have been and will continue to be

adjusted to take advantageof interfaces provided by the VADS tool and others. The

requirements will be discussedalong with the state of progresstoward their fulfillment.

Many of theserequirements are also applicable in Phase3 of this researchproject and

should be met during that phase.

4.1 Functional Requirements

The following sections describe the requirements for the functionality of the tool.

Discussed are the requirements for the input of source code to the tool, the processing

of the code by the tool, and the display and printing of results by the tool.

4.1.1 Input Requirements

The user will have several modes of inputting Ada code to the tool. These

alternatives are described below. For instance, it should be quite feasible to call a text

editor (e.g. vi and Xedit) from the tool. For the Phase 2 tool, editing capabilities will

be text editing only, rather than syntax-directed editing or graphical editing. In addition,

no incremental recompilation or reconstruction of diagrams will occur during the editing

process.

A second input alternative involves the querying of an existing Ada library (for

instance, a VADS library). Such a scheme seems feasible because an Ada library should
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contain all dependency information among units within a system. This option has been

discarded, however, due to schedule constraints and because such an input scheme could

become too dependent upon the format chosen by a compiler vendor for its library files.

A third alternative for input involves the direct entry of or selection of file

names. The file names need not reflect the true compilation order, since one of the

purposes of the tool is to determine that order.

Two important considerations which have not been satisfactorily resolved are

assumptions concerning code completeness and user knowledge of the code. These

considerations affect the input mechanism of the tool. It is not uncommon to compile

source code which represents an incomplete solution and to generate at least partial

graphical representations for the disparate components.

The fact that the tool is building on VADS constrains options somewhat.

Random file selection can lead to gaps in the compilation list which prevents full

compil_4ort-of units dependent on absent units. It is important, therefore, that the

compilation lists resulting from file selection be complete.

4.1.2 Processing Requirements

This section will describe the general scenario of tool operation. Once the user

has selected the Ada files to submit to the tool, he will invoke compilation of the

selected files, in turn producing the DIANA form of the Ada code for each unit

compiled, deriving dependency information among the units compiled (including noting

deficiencies in the supplied compilation list).
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The user will select the diagrams that he wishes to generate. The tool will then

generate the necessary graphical descriptions. Among the options open to the user are:

-- CSD

-- Architectural CSD

-- Subprogram invocation graph (e.g., hierarchical diagram)

-- Object/Package diagram (e.g., Booch Diagram)

A direct association can be made between the components of the architectural

diagrams and the Ada components that they represent, whether or not the Ada

components are compilation units. This direct association should enable the

GRASP/Ada system to localize and isolate needed changes in the diagrams

corresponding to changes in the code. In particular, regeneration of all diagram

components associated with units involved in the subsequent recompilations resulting

from alterations in the code will be unnecessary.

4.1.3 Display Requirements

Once the tool has generated diagrams, the user may select specific diagrams to

be displayed from among the four views available (i.e. CSD, Architectural CSD,

subprogram invocation graph, object/package diagram). Each view selected will have

its own display window which can be moved around the screen, resized, and scrolled

both horizontally and vertically in the X Windows user interface. Display layout should

be improved by a rule base which specifies heuristics for icon placement and connection.
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4.1.4 Output Requirements

All hardcopy output will be provided using either of two supported printers: a

Hewlett-Packard Laser Jet Series II (HPII) compatible printer, or a PostScript compliant

printer. The fonts used for both devices are based on a 10 point monospaced courier

font. The font used on the HPII is a permanent downloadable font which must be

transferred to the printer's memory, and remains available until the printer is either

turned off or the font is specifically deleted. Using the Hewlett-Packard Printer

Command Language (PCL) raster graphics commands, individual bit-mapped images of

each standard ASCII character and additional CSD graphical character are defined

[BEN88, HPC87]. Figure 13 contains the CSD specific characters.

Problems have been encountered when downloading the HPII soft font to a

network printer, but does not effect the use of any fonts once they are resident in the

printer. The printer daemon interprets some of the bit-mapped data, as apposed to

passing_ on to the printer, thus resulting in a corrupted font definition. This problem

does not occur when the font is downloaded to non-network printers. As a consequence

of this behavior, we have used a stand-alone (MS-DOS) computer connected to the

printer's parallel port to download the font. After the font has been downloaded, the

printer can be used as a network resource without further problems.

The font used on PostScript printers is a dictionary which must be downloaded

to the printer. The dictionary is used by the PostScript interpreter to obtain definitions

that generate character shapes, and consists primarily of Postscript procedures to

produce the individual character shapes. The procedures for each standard ASCII

character and additional CSD graphical characters have been successfully implemented
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and no problems have been encountered using PostScript printers [ADO85, ADO88,

HOL88, HOL89].

4.2 User Interface Requirements

This section describes the general requirements for the user interface and the

basic approach used for the prototype. The discussion includes X Windows, the user,

the design method, goals, decisions and implementation. A great deal of effort was

expended on the user interface during Phase 2 which included porting the key Phase 1

components from the VAX VMS environment to Sun UNIX and X Windows.

4.2.1 Development Tool/Environment

The X Window System is the window-based environment selected to develop the

GRASP/Ada user interface. It meets the GRASP/Ada user interface requirements of

an induStry--standard window based environment which supports portable graphical user

interfaces for application software. Some of the key features which make X attractive

for this application are its availability on a wide variety of platforms, unique device

independent architecture, adaptability to various user interface styles, support from a

consortium of major hardware and software vendors, and low acquisition cost. The X

Window System is available on most UNIX systems, Digital's VAX/VMS operating

system, and on many personal computers. With its unique device independent

architecture, X allows programs to display windows on any hardware that supports X

protocol. X does not define any particular user interface style or policy, but provides

mechanisms to support many various interface styles from command-line to pop-up
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menu. A consortium of major hardware and software vendors has made a commitment

to X as a standard base for user interfaces across each of their product lines; Apple

Computer Incorporated, Digital Equipment Corporation, Hewlett Packard, IBM and Sun

Microsystems are just a few of the consortium members. X can be acquired on a 9

track, 1600 bpi tape directly from MIT for $200 (US dollars). Those with access to

ARPAnet can get the X system free via anonymous ftp from a number of sources

[YOU891.

The X Window System was designed at MIT's laboratory for Computer Science

for project Athena, primarily by Robert Scheifler, Ron Newman and Jim Gettys, to

fulfill that projects need for a distributed, hardware independent user interface platform.

The name X, as well as some initial design ideas, were derived from an earlier window

system named W, developed by Brian Reed and Paul Asente at Stanford University.

Currently, the X Window System is supported by a consortium of hardware and

softwar_'-vehdors who support and control the standard specification of the X Window

System.

4.2.2 The User

The user of the GRASP/Ada projects application tools will be a programmer or

computing specialist who is a moderate to heavy computer user. The user's task will

be to use the graphical tools provided by the GRASP/Ada research project to maintain

and update application code.
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4.2.3 Design Method

A combined software engineering paradigm of fourth generation techniques and

prototyping will be used to develop the GRASP/Ada user interface. This combined

paradigm approach has two essential advantages. It lends itself well to the use of the

X Window System and the X toolkit, and it allows a working prototype to be

constructed quickly and continually upgraded as the GRASP/Ada project's application

tools are refined. This paradigm also fits nicely into the design methodology outlined

by Gould and Lewis in their article [GOU85]. Their recommended design principles

were an early focus on users and tasks, empirical measurement, and iterative design.

4.2.4 Design Goals

Focusing on the user and his task, the following primary goals for the

GRASP/Ada user interface have been established: (1) craftsmanship, (2) consistency, (3)

control,"(-4)-communication, and (5) cognitive layout. Other user interface design goals

such as forgiveness, stability, clarity and simplicity will be adhered to where possible.

Although many perceptions exist, no one user interface design policy has been

proven superior for all users. One conclusion that can be drawn, however, is that

craftsmanship is more important than interface style or design philosophy [WHI88]; a

precisely functioning system exerts an enormous effect on usability. Effective

applications are consistent and more easily learned because a user can transfer those

skills from one application to another. Within the GRASP/Ada user interface, there will

exist one coherent way for the user to implement actions regardless of the graphical

application tool that is being used. As a user advances in skill, control often becomes
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more important ashe needslessof the protection of a beginning computer user. Since

our user will be more advanced,as many aspectsof the GRASP/Ada user interface as

practical will lend themselvesto alteration to suit the particular user. Communication

between the system and the user is the basis for control. Keeping the user informed

with feedback and dialogue also exerts an enormous effect on usability. The user of the

GRASP/Ada user interface will be kept informed of the progress of each operation, e.g.,

when completed or what problem prevents execution. Cognitive layout facilitates a

match between the user's visual expectations and the actual operations of the window

system. Although multiple windows increase the perceived viewing space, they will not

necessarily increase the perceived visual scope if the user sees no relationship or pattern

that spans the display [NOR86].

4.2.5 Design Decisions/Implementation

]_he--major design decisions/directions taken to implement the design goals are

briefly described include the following. Craftsmanship will be accomplished through

continuous refinement with user feedback and the use of modern user interface toolsets.

Consistency will be maintained through the use of identical commands throughout all

applications within the GRASP/Ada user interface for similar actions. All commands

available for a particular application may be found in its header frame in the form of

buttons. Control over such aspects of the "look" of the user interface as color, sound,

and window size will be provided in the form of alterable default files. Communication

in the form of messages will be presented in a message window located across the

bottom of the GRASP/Ada system window or as appropriate in a pop-up window. A

51



cognitive layout that increases the visual scope of the user will be achieved through

proper spatial and temporal grouping of all active windows for applications within the

GRASP/Ada user interface. The basicform of each application window will be a frame

header containing all options located across the top of the window and a work area

below the frame headerwhere all sub-windowswhen invoked will appear.

The current state of the GRASP/Ada user interface is reflected in Figures 14 -

16. The GRASP/Ada systemwindow (Figure 14)provides buttons for each of the major

functions of the system. In Version 2.0, the buttons for General, Source Code, and

Control Structure Diagram are functional. The buttons for ArchCSD, Hierarchical

Diagram, and Booch Diagram will be functional in Version 3.0. The user may open one

or more source code windows to display and edit text files (Figure 15) and/or one more

CSD windows to generate and display the CSD from the indicated source file (Figure

16). The user will have the capability to relocate, resize, and scroll the windows created

for eacff--riew. The system window tracks and coordinates all other windows in an effort

to increase the visual scope of the user.

4.2.6 Porting Phase 1 Components to X Windows

One of the major tasks involved in porting the CSD generator to the X Windows

environment was converting the specially designed CSD font to an X compatible format.

X Windows uses a special font format called SNF and a font editor capable of

producing SNF fonts was unavailable. A program was written to convert the CSD font

produced on the SUN SPARCstation to the SNF format.
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Figure 14. GRASP/Ada System Window
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Figure 15. GRASP/Ada Source Code Window
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Figure 16. GRASP/Ada Control Structure Diagram Window
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CSD Font Background. The reader may wonder why yet another CSD font was

required, and the answer has to do with the bewildering number of font formats

available for today's common output devices. The earliest versions of the CSD intended

for the CSD symbols to be represented using the extended graphics characters in the

IBM PC ASCII character set. However, this reliance on the character set of a specific

machine was not favored as it drastically limited the design of CSD characters and was

not portable. The use of customized fonts was identified as a superior approach which

would allow the GRASP/Ada team total freedom in the design of CSD characters.

Unfortunately, this meant having to design custom CSD fonts for each desired output

device and introduced the problem of keeping consistent these numerous CSD fonts

had widely different character resolutions and horizontal/verticalwhich often

proportions.

Phase I of the GRASP/Ada research project involved the design and

implerrr_tation of a CSD generator for the VAX 11/780 platform. The available output

devices were the VT220 series terminal, the DEC LN03 laser printer, and the HP

Laser Jet II laser printer, and each output device had its own font format. The VT220

terminals required a screen font with characters six pixels wide by ten pixels deep,

encoded in a font format using sixels (a DEC convention referring to a number of

pixels). The DEC LN03 laser printer also required a sixel-based font format but with

a much higher resolution. As sixel-based font editors were not available to us, the

GRASP/Ada team wrote its own customizable font editor for producing VT220 and

LN03 fonts. The HP Laser Jet II required its own special font format using a 25 pixel
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by 51 pixel character matrix, and this font was created using a font editor for the IBM

PC.

Porting the CSD generator to the SUN SPARCstation environment introduced

a new output device, the SUN SPARCstation display. This output device made use of

fonts encoded in a format called vfont, with a vfont font editor provided as part of the

system software. The GRASP/Ada team used this editor to produce a vfont version of

the CSD font.

At this point, four different CSD fonts were in existence, the two sixel-based

fonts, the Laser Jet font, and the SUN SPARCstation font. Other fonts, in still more

formats, were under consideration, including fonts for the IBM PC, Apple Macintosh,

and Printronix P300 line printer. Each font would have to be individually created

because the widely varying resolutions and differing horizontal/vertical proportions

among the different output devices made automatic font translation impractical. It

would tm preferable to work with a CSD font for one device and automatically generate

the fonts for other devices, but the automatic translation would lead to less than

desirable results. Furthermore, font creation often requires a certain amount of minor

character manipulation to produce aesthetically pleasing results on lower resolution

devices. Because of this, any design change in a CSD character promoted a flurry of

smaller redesigns for each of the supported fonts, a time-consuming problem. It was

clear that something would have to be done about the rapidly multiplying font problem

in order to maintain consistency among the various output devices.

CSD Font For X Windows. The solution lay, in part, in the port of the CSD

generator to the X Windows environment. X windows is a device-independent window
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manager that was slow to gain acceptancebecauseof its processor-intensivegraphics

manipulation but is rapidly becomingan industry standarddue to the advent of suitable

hardware. Fonts in X Windows usea format called SNF and are device-independent,

as the burden of displayingSNF fonts on the output device is left to the implementor

of X Windows for that output device. By producing the CSD font in SNF format and

usingX Windows routines for all I/O, the CSD generator would be compatible with all

machines that supported X Windows.

The GRASP/Ada team was unable to locate either an SNF font editor or

documentation describingthe SNF font format. A utility to create SNF fonts from fonts

in BDF format wasavailable on the SUN SPARCstation, but a BDF font editor could

not be found (BDF is not a "machine-ready"font format, but rather a textual format for

describing fonts). However, documentation describing the BDF font format was

available, so we proceeded as follows. First, the vfont format was chosen as the

"workir_' font format as a font editor for that format was available on the

SPARCstation. This font was updated to reflect all of the CSD modifications and

extensionsneeded for the PhaseII GRASP/Ada CSD generator. Second,a conversion

program waswritten to translate CSDvfont fonts to BDF fonts. A typical 256character

SUN font translated to a BDF file of almost6000 lines. Third, the BDFTOSNF utility

wasused to create an SNF CSD font for X Windows. This font was then available for

installation and useby the GRASP/Ada CSD generator.

CSD Fonts For PostScript Printers. While X Windows has been establishing itself

as the output format for display screens, PostScript has become the de facto output

format standard for printers. PostScript is an interpreted language for graphics and type
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that is device and resolution independent. The versatile operators in the language allow

many effects to be performed with text, including rotation, shading, and scaling. Its

major disadvantages are speed and costs. Because it is interpreted and uses a great

deal of memory, PostScript is notoriously slow on most printers, and licensed versions

of PostScript are usually expensive. However, faster processors, more on-board memory

for printers, and better PostScript implementations have minimized the speed problem,

and lower-cost PostScript clones are becoming commonplace. In addition, some

attempts have been made at using PostScript for producing text on computer displays,

most notably the NEXT computer which uses a screen format called Display PostScript.

This would enable the same operations to produce output for both display screens and

printers and would greatly reduce the amount of effort needed to write applications

programs. At the present time, however, the optimal implementation of the

GRASP/Ada tool has utilized the X Windows format for screen display and PostScript

for haraeopy.

4.3 Hardware Requirements

The intended platform for development and distribution will be a Sun/SPARC

workstation. The advanced graphics capability of this system was a primary

consideration. Other options included the VAX 11-780 and a PC environment.

4.4 System Software Requirements

The system software constitutes the software platform on which the individual

GRASP components are based. This platform currently consists of the X Windows
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facilities, discussedabove in conjunction with the user interface, and the VADS Ada

system with its DIANA interface. A discussion of DIANA and the VADS

implementation follows.

4.4.1 DIANA - An Intermediate Representation for Ada

DIANA, Descriptive Intermediate Attributed Notation for Ada, is an

intermediate representation language for Ada source code. DIANA is called a

"language" because its definition [GOO83] is described in a BNF-like notation known

as Interface Description Language (IDL) [NES81, GOO83, McK86]; in reality, DIANA

is an abstract data type whose model is that of an abstract syntax tree supplemented

with semantic links, creating a DIANA net. A DIANA net consists of typed nodes

decorated with four types of attributes: (1) syntactic (links to other nodes producing the

tree), (2) semantic (producing a directed graph), (3) lexical, and (4) code generation-

specifi .c_ Am instance of DIANA with only lexical and syntactic attributes comes close

to a comparable abstract syntax tree except that some similar nodes (e.g. nodes

referencing identifiers) are typed differently so that each type may contain different

semantic attributes. In addition, a storable form of DIANA is defined to facilitate reuse

of specific instances of the data type. [GOO83, ROS85]

Figure 17 partially illustrates the contents of a DIANA subnet corresponding to

a segment of Ada code. Consider the following segment:

type MYFLOAT is digits 6 range -1.0..1.0;

subtype MYFLOAT2 is MYFLOAT digits 2;

X : MYFLOAT2;
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Figure 17. Example of DIANA Subnet
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The figure illustrates in part the concurring DIANA subnet. For convenience, the

diagram is split into three sections paralleling the subnet for each line in the above

code. These three subnets are part of a larger DIANA net for the enclosing

compilation unit. The subnet for the variable declaration has its basic abstract syntax

tree form (syntactic attribute names prefixed by as__), supplemented by a semantic

attribute (named sm_typestruct) pointing back to a subnet containing the subtype

structure of MYFLOAT2. This subnet, in turn, has its own semantic attribute (again

named smtypestruct) pointing back to the underlying type structure. This figure,

adapted from [GOO83], is incomplete in that many more semantic attributes exist which

may point to distant subnets when evaluated.

Background. DIANA was first developed in 1981 by the cooperative effort of

teams from the University of Karlsruhe (West Germany), Carnegie Mellon University,

Intermetrics, and Softech. The design was based on previous intermediate languages

TCOLCa_nd-AIDA [BRO80, DAU80, PER80, GOO83, McK86]. A revision effort

headed by Arthur Evans, Jr. and Kenneth J. Butler at Tartan Laboratories under the

auspices of the Ada Joint Program Office produced a revision of DIANA based on the

1982 version of the Ada definition. This edition contained an Ada package specification

for the DIANA data type [GOO83]. A third revision was drafted in 1986 by Carl F.

Schaefer and Kathryn L. McKinley of Intermetrics for the Naval Research Laboratories;

however, no example Ada package specification for the DIANA type was provided

[GOO83, McK86, SMI88]. The MITRE Corporation derived two package specifications

in its effort to evaluate the 1986 version of DIANA [SMI88].
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The original purpose of the DIANA data type was to serve as a basis for

communication between early and late stages of compilers; in fact, [SMI88] mentions

several compilers which are DIANA-based including VERDIX, Rational, and others.

However, [GOO83] claims the suitability of DIANA for other tools as well. Several of

these tools are mentioned below along with discussions of their DIANA

implementations.

[ROS85] is concerned with the use of DIANA data type templates to create

source "transformation tools". However, the article was useful in that it demonstrates

the necessary contents of a DIANA support toolset. As described by Rosenblum, the

necessary tools include a parser to translate Ada source into an abstract syntax tree, a

"tree normalizer" to convert the AST to a full DIANA net, a prettyprinter to revert the

DIANA net to Ada source, a "tree dumper" to convert the internal DIANA to external

(ASCII) DIANA, and a "tree reader" to perform the inverse function. The tools

describ_el in [ROS85] were based on the 1983 version of DIANA.

[SMI88] describes the MITRE effort in evaluating the 1986 version of DIANA.

This involved the translation of the IDL specification for DIANA into a data type and

structure specification plus operations on that type using the IDL Toolkit developed at

the University of North Carolina [WAR85, SNO86, SMI88, SHA89]. Also required

were the development of a parser and a set of packages to connect the semantic links

of the underlying DIANA tree.

[MEN89] describes the Stanford implementation of Anna, a superset language

of Ada containing formal annotations. The manual describes the tools which comprise

the Anna toolset and outlines scenarios for their use. Most of these tools work with

63



DIANA nets in varying stagesof development. The DIANA implementation is based

on the 1983version of DIANA and on the work described in [ROS85].

The major tool dealing with DIANA is, in fact, the package astv.a which

provides the definition of the DIANA type, of constituent types,and of the operations

on those types. In addition to the node types mentioned in [GOO83], there are node

types which are specific to Anna and are not defined in standard DIANA. There is a

parser which translates Anna source code (or presumably pure Ada code) into a

DIANA abstract syntaxtree with possibleAnna-specific nodes. A semantic processor

adds the semantic links, changing the tree into a directed graph. A transformer

translates the Anna-specific subnets into pure Ada-based DIANA. There are other

support tools such as a DIANA reader/dumper, a DIANA-to-Anna (or Ada)

prettyprinter, and a parser generator complete with an Anna grammar. An interesting

problem which could have arisen with the use of this toolset would be the possible

overheardresulting from the fact that the toolset implements a superset of Ada (e.g. the

use of the transformer). Another problem which would certainly have proven

troublesome is the incompletenessin the implementation of Ada semantics.

Verdix VADS DIANA. The DIANA interface used by the VERDIX VADS

compiler was selected for use in the GRASP project. This interface consists of seven

Ada specification packages atop a largely C-based implementation. This interface

provides the type declarations for DIANA nodes with discriminants to distinguish node

types. Also included are facilities to produce a dependency graph for a given unit, to

produce a topological sort of that graph corresponding to a given compilation order, and

to access the DIANA net for each unit in that sort. A generic tree walking algorithm
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with two formal subprogram parameters corresponding to preorder processing and

postorder processingroutines for each node canbe tailored to gather what information

is needed from each net.

The VERDIX version of DIANA differs slightly from the [GOO83] version, the

difference supposedly being for performance reasons. Among the most detrimental

changes was the trimming of the nets for storage efficiency. It was hoped that the

reduced net would be sufficient for purposes of the project; however, the full DIANA

net (produced only by the -F option of the compiler) was required. The full net is

usually significantly larger than the reduced net; this will probably prove to be an

inconvenience to those involved in the tool's development as well as its users. In

addition, VERDE( added symbol table nodes for quicker access to the meanings of the

symbols. Earlier examination of the utility of the symbol table nodes proved

inconclusive; however, further discussions with the technical representative at VERDIX

may yeltprove fruitful. There are characteristics of DIANA which constrict its ease of

use. For instance, the designers of DIANA forbade the alteration of nets created in

previous compilations [GOO83, McK86]. By every indication, VERDIX has followed

this policy with its DIANA implementation.

In order to produce a subprogram invocation graph by mere traversal of the

DIANA net, it is necessary for there to be a pointer path between the node

representing the invocation of a subprogram and the node representing the body of that

subprogram. Unfortunately, no such path exists in general. There are links from both

the invocation and the body to the original specification of the subprogram, but no
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direct path is possible from invocation to body. Because of this disconnection, it is

difficult to determine calling hierarchies by mere traversal of DIANA nets.

In order to build the calling hierarchy, it is necessary to provide a means to

"connect" the invocation of a subprogram to the body of that subprogram. The

approach has been to construct a directed graph where vertices represent subprograms

and arcs represent the calling hierarchy among subprograms. The creation of a vertex

in the directed graph corresponds to the encounter of a new subprogram specification

within some DIANA net. The creation of an arc corresponds to encountering a call by

one subprogram to another, where the head and tail of the arc represent the called

subprogram andthe caller respectively. The routines provided by the DIANA interface,

namely get_compilation_order, plus the Ada requirement that the specification of a

subprogram be compiled before any call to that subprogram, ensure that there are no

"dangling arcs." This approach is currently being implemented.

4.4.2 Library Management

Any tool that aspires to be part of a comprehensive software development

environment must contend with database issues. This is especially true of a tool which

would be part of an APSE, considering Ada's separate compilation requirements.

Ideally, an APSE database would maintain relationships of various sorts among the

program components of Ada systems. Such a database would also maintain other

artifacts pertaining to the Ada system such as text documentation, testing procedures,

and graphical representations as well as the connections to their program components.
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The entity-relationship database model is recommended for APSE databases

[McD84, LYO86]. Such a choice is quite appropriate given the variety of relationships

among units of an Ada program. For each unit (whether such a unit is embedded

within another or not), the h'brary will contain, among other things, the name of the

unit, its intermediate representation, a file name and position where the unit can be

located, a timestamp, and any graphical representation heretofore created corresponding

particularly to that unit. Each unit can be related by various forms of hierarchy, and

this relationship will be reflected the library structure as well.

The purpose of a "GRASP library" is to maintain the information on an Ada

system needed to produce appropriate graphical representations. The extent to which

this goal can be realized depends on the effective granularity which can be achieved

practically in the GRASP library. The granularity not only refers to the refinement of

entities in such a library but also the relationships which can be practically determined.

It is en_F_sio_ed that the GRASP library would act as a supplement to DIANA in the

areas of deficiency mentioned earlier and will most likely build on (and be limited by)

the facilities provided by VADS.

4.4.3 Graphics Tools Requirements

Tools will be required to produce icons appropriate for the diagrams produced

by the GRASP tool. The X Windows graphics facilities will be used as the icon

construction tool.
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4.5 Status of the GRASP/Ada Prototype

Figure 18 shows the current the architecture of the GRASP/Ada prototype. The

user interface, built around X Windows, provides access to all GRASP components.

CSDgen, ArchCSDgen, SCgen, and ODgen generate CSDs, architectural CSDs, structure

charts, and object diagrams respectively, from Ada source code. CSDgen and

ArchCSDgen are based on a parser and scanner built using BISON and LEX. SCgen

and ODgen are being built around the DIANA interface to Verdix VADS. All of the

components ultimately rely on the UNIX file system.

The user interface and CSDgen are fully operational and available on a limited

basis for initial evaluation. ArchCSDgen is in the late stages of implementation, but will

not be fully integrated with the user interface until Phase 3. SCgen and ODgen will be

implemented and integrated during Phase 3.
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Figure 18. GRASP/Ada System Architecture
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5.0 FLrI'URE WORK

Phases 1 and 2 of this task included (1) the study, formulation and evaluation of

graphical representations for Ada software, (2) development of a prototype reverse

engineering tool that provides support for generation of both algorithmic and limited

hierarchical diagrams, and (3) the investigation of the generation of additional graphical

representations to provide task, package, and data flow views of Ada software.

The goals of Phase 3 are the following: (1) to continue the examination,

formulation and evaluation of graphical representations for Ada software, (2) to

continue the development of the Phase 2 prototype reverse engineering tool to include

support for generation of both algorithmic diagrams and architectural diagrams that

capture hierarchical organization as well as task, package, and data flow information,

and (3)_-o in-vestigate the generation of additional graphical representations which result

from (1). The subtasks outlined in the research approach below are expected to

provide a basis for a methodology for graphically-oriented reverse engineering of Ada

software.

5.1 Research Approach

This phase of the research includes the following subtasks.

1. Formalize a set of graphical representations that directly support Ada software at the

system level of abstraction.
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A small, but representative, Ada program will be utilized to formulate and

evaluate a set of graphical representations. Specifically, the feasibility of reverse

engineering the diagrams from Ada source code will be evaluated. These graphical

representations are expected to undergo continual refinement as the automated tools

that support them are developed.

2. Design and implement a prototype software tool for generating architectural diagrams

(ADs) [to include structure charts, package diagrams, and task interaction diagrams] from

Ada source code.

The present prototype which has focused on CSDs and architectural CSDs will

be extended to include additional architectural diagrams. This subtask will include (1)

development of procedures for identifying and recording module interconnections, (2)

development of algorithms for architectural diagram layout, and (3) development of

method_-fo_ displaying/printing architectural diagrams on hardware available for this

research. The tool will be used on representative Ada software. The generated set of

graphical representations will be evaluated for completeness, correctness, and general

utility as an approach to reverse engineering.

3. Investigate the migration of the graphical representations generated by the reverse

engineering prototype tool toward forward engineering methods.

Of particular importance here is the ability to edit the diagrams directly rather

than regenerate them from Ada source code each time a change is made. The
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feasibility of extending an existing text editor with the capability of interactively

generating diagrams as the source code is entered or modified will be determined.

4. Investigate additional automatically generated graphical representations of Ada

software such as a data flow view, and investigate the application of artificial intelligence

(AI) and expert systems to the generation of system level diagrams.

A general data flow view of the software is expected to be the most difficult to

generate strictly from source code. The use of expert systems and rule-based systems

will be investigated as an approach to analysis of Ada software. In particular,

/El-assisted identification of components and layout of the graphical representations

described above will be investigated.

5. Investigate the integration of the prototype with existing CASE tools.

_is _-mportant to leverage the functionality of existing tools to achieve an overall

automated support environment. While this research has focused on reverse

engineering, other tools have been developed which address additional aspects of the

software life cycle. Of particular interest here is Interactive Development Environments'

(IDE) CASE tool which supports Object-Oriented Structured Design (OOSD).

5.2 Proposed Research Schedule

The Gantt chart in Figure 19 provides the sequence of activities to be

accomplished during Phase 3 of this project. The rows in the chart correspond to each

of the subtasks described above.
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1

2

3

4

5

1990

Jun Jul Aug Sep Oct

1991

Nov Dec Jan Feb Mar Apr May

Figure 19. Phase 3 Gantt Chart
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Reverse Engineering
and Design Recovery:

A Taxonomy

Reverse engineering is

evolving as a major
link in the software

life cycle, but its

growth is hampered

by confusion

over terminology.
This article defines

key terms.

Elliot J. Chikoflky, Index Technology Corp. and Northeastern University

James 14. Cross H, Auburn University

he availability (if computer-aided sys-

tem._ng4neering environments ha.s

redefined )tow litany organizations

approach .%;_tem development. To meet

their trite potenti',d, (LaL_E environmenLs

;ire bei.g applied to tile problems of

maintaining and enhancing existing sys-

tents, Tile key lies in applyin K reverse-en-

gineerhlg approaches to softw'are systems.

I-Iowever, an imlx-diment to success is die

considerai)le confusion (wer tile termino-

Iog_ n._'d ill Ixtth technical arid market-

[)lace discu._sions.

It is in the reverse.c'ngineering arena,

where the software maintenaulce and de-

velopment communitJc-s meet, that vari-

ous terms for technologies to analyze and

understand existing systems }lave been

frequently misused or applied in conflict-

ing ways.

In this article, we define and relate six

terms: forward engineering, reverse engi-

=leering, redocumentation, design recov-

cry, restructuring, and reengineering.

Our objective is not to create new terms

but to rationaliz_ the terms already in use.

The resulting definitions apply to the un-

derlying engineering proce._es, regard-

le,_s of the degree of automation applied.

Hardware origins
The term "reverse engineering" has iLs

origin in the analysis of hardware --

where the practice of deciphering designs

from finished products is commonplace.

Reverse engineering is regularly applied

to improve your own products, aLSwell a.s

to analyze a competitor's products or

those of an adversary in a military or na-

tional-security situation.

In a landmark paper on the topic, M.(;,

Rekoff defines reverse engineering aLS

"the process of developing a set of specifi-

cations for a complex hardware swstem I_"

an orderly examination of specimens oF

that sy,atem.'l He describes such a process
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Requirements

: (constraints, Design Implementation

engineenng _1 I engmeenngd
• v o v -ool I /

. engineedng I I-- engineedng I ..............

Design __ 1_:_ Design I

eering I "

(renovation) I J (renovation) I

L_..) L_J L...J
Redocumentation.

Restructuring Restructuring restructudng

Figure 1. Relationship between terms. Reverse engineering and related processes are

transformations between or within abstraction levels, represented here in terms of life-

cycle phases.

as bei.ng conducted by someone other

tlh'm the developez; "without die I)enefit

of any of the original dr;n_4ngs ... for the

purpose of making a clone of the original

hardware system...."

In applying these concepts to soliwm-e

systems, we find that many of these ap-

proaches apply to gaining a basic un-

derstanding of a system and its structure.

However, while the hardware objective

traditionally is to duplicate the system, the

software objecd_e is most often to gain a

sufficient desi_-le_:! understanding to

aid maintenance, strengthen enhance-

ment, or support replacemenL

Software maintenance
The ANSI definition ofsoftware mainte-

nance is the "modification of a software

product after delivery to correct faults, to

improve performance or other attributes,

or to adapt the product to a changed envi-

ronment," according to ANSI/IEEE Std
729-1983.

Usually, the system's maintainers were

not its designers, so they must expend

many resources to examine and learn

about the system. Reverse-engineering

tools can facilitate this practice. In this

context, reverse engineering is the part of

the maintenance process that helps you

understand the system so you can make

appropriate changes. Restructuring and

reverse engineering also fall within the

global definition of software mainte-

nance. However, each of these three pro-

cesses also has a place within the contexts

of building new systems and evolutionary

development.

Life cycles and
abstractions

To adequately describe the notiozl of

software forward and reverse engineer-

ing, we must first clarily three dependent

concepts: the existence of a life-cycle

model, the presence of a subject system,
and the identification of abstraction Icw-

els.

We assume that an orderly life-cycle

model exists for the software-develop-

ment process. The model may be repre-

sented as the traditional waterfall, as a spi-

ral, or in some other form that generally

can be represented as a directed graph.

While we expect there to be iteration

within stages of the life cycle, and perhaps

even recursion, its general directed-graph

nature lets us sensibly define forward

(downward) and backward (upward) ac-
tivities.

Tile subject system may be a single pro-

gram or code fragment, or it may I_: a

complex set of interacting programs,job-

control instructions, signal interfaces,

and data files. In forward engineering, the

subject system is the result of the dcwelop-

merit process. ILmay not yet exist, or its

existing components may not yet be uni-

ted to form a system. In reverse engineer-

ing, the subject system is generally the

starting point of the exercise.

In a life-cycle model, the early stages

deal with more general, implementation-

independent concepts; later stages em-

phasize implementation details. The
transition of increasing detail th rough the

forward progress of the life cycle maps

well to the concept of abstraction levels.

Earlier stages of systems planning and re-

quirements definition involve expressing

higher level abstractions of the system

being designed when compared to 0re im-

plementation itself.

These abstractions are more closely re-

lated to the bt,siness rules of the enter-

prise. They are often expressed in u_r

terminology that has a one-to-many rela-

tionship to specific features of the fin-

ished system. I=1 the _tmc sense, ;I bhle-

print is it higher level ;.ll)str;tcfion of the

btfil(ling it rel)resents, and it may docu-

nIcl|t o111)' OIIC of the m:tnv m(_lcls (ch'c-

Ilic;tl, x+;itcr, ]lc;ttiHg/vt'nlil;Iti_tl/;fit ('<m-

<litionitlg, and egress) thai ntust ('<)me

IOgethcr.

It ix iml_rt;inl to distinguish I×-twccn

b'veL_'()fahstr;wti<_n, ;t ('(.ttel)t thai cr()_,_'s

concepttml stitgcs of(lesign, and ebTg_ees()f

allstntction within :1 single stagc. Si)im-

ning lift-cycle phitses involves a uansition

from higher abztraction levels in earh"
stages to lower abstractkm levels in later

stages. While you can represent inlorma-

tion in any litL'-cycle stage in detailed hwm

(lower degree of abstraction) or in more

summarized or global forms (higher de-

gree of abstraction), these definitions em-

phasize the concept of k'veL_of abstractiota

between lift-cycle phases.

Definitions
For simplicity, we describe key terms

using only three identified lift-cycle stages

with clearly different allstraction I('vels, ,t.,

Figure I shows:

• requirements (specification of the

problem being solved, including objec-
tives, constraints, and business rules),

• design (specification of the solution),
and

• implementation (coding, testing, and

delivery of the operational system).

Forward engineering. Forward engi-
neering is the traditional process of mov-

ing from high-level abstractions a_ld k_n-

cal, implementation-independent

designs to the physical implementation of

a system.

While it may seem unnecessary -- in

view of the long-standing use of desigm

and development terminology __ to intro-

duce a new term, the adjective "for_-ard"
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has come to be used where it is necessary

to distinguish this process from reverse

engineering. Forward engineering fol-

lows a sequence of going from require-

ments through designing its implementa-

tion.

Reverse engineering. Reverse engineer-

ing is the process of analyzing a subject

system to

• identify the system's components and

their interrelationships and

• create representations ofd)e system in

another for,n or at a higher level of ab-

smlction.

Reverse ellginccfing genel:llly involves

extlucling design arti[ilcts and building or

syuthesizing al)suactions that are le_ im-

I)lemcntation-deI_.uldent. While reverse

engineering often involves an existing

fitnction;d systenl as its subject, this is nora

requirement. ]1_lU call perfornl rtwerse ei1-

gineering starting from any lcwel of ab-

straction or at anystage of the life cycle.

Reverse engineering in and of itself

does not involve changing the subject sys-

tem or creating a new system based on tile

rev(:rse-engineered subject system. It is a

process of _xandnat/on, not a process of

change or replication. _

In spanning the lif'-e<'ycle stages, reverse

engineering covers a broad rmlge starting

from the existing implementation, recap-

turing or recreating tile design, and

deciphering the requirements actually

implemented by the subject system.

There arc mat W subareas of rcwerse en-

gineering. Two subareas that are widely

referred to arc- redocumentadon alld de-.-

sign recovery.

Rtdocumentation. Redocumentation is

the creation or revision ofa sem_mtically

equivalent representation within the

salne relative abstraction Icwel. The result-

ing forms of representation are usually

considered alternate views (for example,

dataflow, data structure, and control flow)

intended for a human audience.

Redocumentation is the simplest and

oldest form of reverse engineering, and

many consider it to be an unintrusive,

weak form of restructuring. The "re-" pre-

fix implies that the intent is to recover doc-

umentation about the subject system that

existed or should have existed.

Some common tools used to perform

redocumentation are pretty printers

(which display a code listing in an im-

proved form), diagram generators (which

create diagrams directly from code, re-

flecting control flow or code stntcture),

and cross-reference listing genenuors. A

key goal of these tools is to provide easier

ways to visualize relationships among pro-

grain components so you can recognize

and follow paths clearly.

I)mi_, rrrm,eO., l)esign recove,v ix a sub-

set of revel:se enginec!-ing in which (1o-

Reverse engineering in
and of itself does not

involve changing the

subject system. It is a
process of examination,

not change or replication.

main knowledge, external information,

and deduction or fuzzy reasoning are

added to the observations of the subject

system to identify meaningful higher level

abstractions beyond those obtained di-

rectly by examining tile system itself.

Design recovery is distingafished by tile

source's and span of information it should

handle. According to Ted BiggerstaH:

"Design recovery recreates design abstrac-

tions from a comhination of c(_le, exist-

ing design documentation (if availahle),

personal experience, and general knowl-

edge about problem and application do-

mains ... Design recovery nlttSt reproduce

all of the information required for a per-

son to fully understand what a prograln

does, how it does it. why it does it. and so

forth. Thus, it deals with a far wider range

of information than found in conven-

tional software-engineering representa-
tions or code."2

Restructuring. Restructuring is the

transformation from one representation

form to another at the same relative ab-

straction level, while preserving the sub-

ject system's external behavior (func-

tionality and semantics).

A restructuring transformation is often

one of appearance, such as altering code

to improve its structure in the traditional

sense of strnctured design. The term "re-

structuring" came into popular tkse from

the code-to-code trmasform that recasts a

program fronl an unstructured ("spa-

ghetti") fornl to ,1 structnred (goto-le_)

fornl. However. the terln has a broader

meaning that recognizes tile application

of similar tratlsfornlatJons and recastJng

techniqt,es in reshaping data models, dr'-

sign pl,ms. :lll(l re(luirell|('llls Slltlctur£.s.

l);u;t n()rmaliz;ttion, {iHexanlplc. is a (t_ua-

Io--dilla z'eslzucltlritlg II';lll."it_H'lll It illl-

pu'ovc ;l logical (I;tta m(_ten ill the (latM)a.,_"

(It'sigll pl o( c_,;.

M;tny t)'l_'s ol'lestructuring can l_.- }_'r-

Ibrn)ed with .t knowledge of str)tctur;ll

I"<)1"111but without :111 nndcrstallding of :

nleaning. For ex;unple, yon can cnnvert a

set of If statenlexlts into :1 (21se structure,

or vice versa, without knowing tile

progr;un's pnrlx)se or anything about its

problcnl domain.

While restructnring Creates new ver-

sit,IS that in,l)lenient or propose cha,lge

to die subject system, it dots not normally

inw)lve rnt_tlilications I_:cau._ of new r£_

(lniremenLs. I Iowever, it may lead to bet-

ter ol_,er_ttions of the subject system that

suggest changes that would improve

peels of the system. Restructuring is often

u._d a.s a/i)rm of preventive maintenance

to improve the IIhysical Stale o|the subject

system with respect to sonic preferred

standar(l, h may al._) inwflve adjusting the

subject system to nleet new ellvirollnlell-

tat COllStraints that do not inw)lve reax_-ss-

ment at higher absmtction Itwels.

Re'engineering. Reengineering, also

known _,)5 [xJtll renovation and reclama-

tion. is the examination alld aJter-adon of

a subject system to reconstitute it in a new

fi)rm and the subsequent implementa-

tion of die new form.

Reengirleering generally includes some

form of rever._ engineering (to achieve a

more abstract description) followed by

some fi)rm of for_ard engineering or re-

structuring. This may include modifica-

tions with respect to new requirements

not 1net by the original system. For exam-
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I Software
work

product

a I tVwSemantic c0mp0ser(s)
analyzer

• I InformatiOnbase

of product

• Format
• Graphics
• Documentation
• Metrics
• Logic
• Reports

F'_te 2. Model of tools architecture. Most tools for reverse engineering, restructuring,

and reengineering use the same basic architecture. The new views on the right may

themselves besoftware work products, which are shown on the left. (Model provided by

Robed Arnold of the Software Productivity Consortium.)

pie, during the reenginecring of tutor,na-

tion-management systems, an orh_,miza-

tion generally reassesses how tile syste,n

ilnplements high-level btnsinle_ rules avid
makes inodificatiolls to conform to

changes in the btisitless 10, the tilttlrc.

There is SOille conllilsion ill tel-ntis, ll;ir-

Ocularly hetweeil rccligillt't'lTiig ;tiid rt'-

structui-ing. ]'lie IBM ilscr grollp (;uidc,

for exaliiple, delillc's "applic;l[ioll reeil-

lineering" ;,is "the prt_ce.s.s of lillldil),ilig

the intern',d nlechliliisnis of a s_ielil or

program or the data lll'uctun'e_; ofa syslenn

without chanlin t the functionality (sys-

tern capabilities as perceived by the user).

In other words, it is altering the h0m

without affecting the wlutt.'3 This is clo._st

to our definition of restructuring. How-

DesignIssues

Alternatives
rejected

Forward Ramifications
engineering of decisions

Existing
design

Code Reverse
engineering

Unplanned
ramifications
(sideeffects)

J
Figure 3. Differences between

viewpoints. Although reverse engineering

can help capture lost information, some

types of information are not shared be-

tween forward- and reverse-engineering

processes. However, reverse engineering

can provide observations that are un-

obtainable in forward engineenng.

ever, two p;uragraphs later, die s;une publi-

cation ._l).s, "It is x_ue dlllt ;ul application is

reenlgineered witlnout additionlal

liulctiollality being added." Tiffs supports

our ililirc gt'xlcr;l] dcfitlitiotn ol+ reenlgiil-

t,t, lJllt. _.

Whilc rt't'llgillt't'lilig involves I_llll t(li'-

ward t'ligilit't!lilli_ ;llid It'Vt!l+.Xt • t'llgillCel'-

illg, it is UO/;I sltllt'l+l)]lt " of thc two. Reeln-
_illt't'lilig ti._t'_ lilt" I'tlrwlird- ;ili(I

rt'vt, rsc-ciigiilceriilg iechliologies ;ivail-

ahl¢, hut to date" it has inot I:_enl line llrinnci-

pal drive'n" of their progne_. Ikith tech-

nologies are evolvinlg rapidly,

independent of their application within

ree,lgineering.

Objectives
What are we trying to accomplish with

reverse engineering? The primary pur-

pose of rowers: engineering a software s),s-

tent is to increase die overall comprehen-

sibility oftbe sy_tenn for both rnainltenance

and new development. Ik-yond die defini-

tions above, there are six kcT objectives

that will hnaide its direction a_ the techno-

Io!,,7 matures:

• (3opt with coniplcxity. We must dt'-

velop methods to hotter deal with the

shear volume and connplexity of systems.

A key to controlling diesc attributes is au-

tomated supl_lrt. Rever;ic-¢nginleering

nietliiKbi and tools, connhiint_l witln CASE

ciiviroliinen_, will provide a w'ay to ex-
tract relevant ilifornlatiun so decision

makers can control the process mtd the

product in systems evolution. Figure 2
shows a model of the structure of most

tools fi_r reverse engineering, reengineer-

ing, and restructurilng.

• Generate alternate views. Graphical

representations have tong L_en accepted

as comprehension aids. ltowever, creat-

ing and maintaining them continues to be

a hotdencck in die process. Reversc-engi-

16

neering tools facilitate the generation or

regeneration of graphical representa-

tions from other forms. While many de-

signers work from a single, primary per-

spective (like dataflow diagrams),

reverse-engineering tools can getlerate

additional views from other perspectives

(like control-flow diagrams, structure

charts, and entity-relationship diagrams)

to aid die review mid verificadotl process.

You can also create ahernate forms of

nongl_llihical representationls with re-

ven.'sc-enginccnSnig tools to forlln an innnpof

umt part ofsystem docnmelltation.

• Recover lost ilnlbrni;itioll. The colniH-

uillg evolnltion of large, Iolig-lived s'csnt'llls

leads to lilsl illlilrlllalion :ll)oiil lilt' ._vsit'lll

dcsigni. Modilications lure" frcqtlclllly liill

rctlecicd ill dociinlcnlaliiln, p:irliiiil:lrl)'

at a higlncr Icvel Ihaii Iht" c'odt" il._'lf. Wllilc

it is lid slillsLittnlt" lilr |lre._.'nvinig desigli

history in tint" Iirst pl'-ice, re-verse enginecr- :

ing -- particularly design recovc'ry -- is

our way tO salvage whatever we C',lnlfi'onln

the existing Items. h lets us gel a hanldlc

on systenis when we don't nnderstand

what they do or how their individu-'d pro-

gr, uns interact ;is a system.

• Detect side effects. Both haphazard

initial design and successive modilica-
lions can lead to unintended ramifica-

tions and side effects that inlpede a

system's performance in suhtie ways. /ks

Figure 3 shows, re-verse en1,fneeri.g ciul

provide observations beyond tlno_" we can

obtain with a forward-engineering iK-r -

spective, alld it can help detect alloinalies

and prolllenns llt.filre users report Ihein its

hugs.

• Synthesize higlner ahstractions. Re-

verse engineering requires mc'tlno,ds and

techniques file creating alternate views

that trallscend to higher abstraction lev-
els. There is debate ili the sltiware Colin-

inunity as to how coniiplelely the pr(_cexs

can I_ auloinatcd, Cleady, exp_Fl-_/slt.lll

technolo1,7 will lllaya niajor role in achiev-
illg the full potential of generating high-
level air, tract iol IS.

• Facilitate rcLtSe. A significant issue ill

the nlovemenlt toward _liw'are reusahility

is die large body of existing soft_lrc _,i-

sets. Reverse engineering caJl Inclp detect

candidates for reusable soliw-are conipt_-

nents from present systen_.
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Economies
The cost of understanding software,

while rarely seen as a direct cost, is none-

theless very real. It is manifested in the

time required to comprehend software,
which includes the time lost to misunder-

standing. By reducing the time required

to grasp the essence of software artifacts in

each life-cycle phase, reverse engineering

may greatly reduce tile overall cost of soft-

ware.

lit COlnlnenting on this article, Wah

Scacchi of the University ofSoud_.ern C.:d-

ifornia Inade the follovAng ilnl×_rtant ob-

._l'vatioltS: "Malty Clililtl that c(inventiOllal

_ll'l't,_._tl'e IIIiIilILCII_LIlCC }}t'_lCliCt'S ;ICCOLIII(

tbl" 50 to 90 IRrrccnt of tot;d lifT,'-cycle COSL_;.

Software reversc-cllgilleering tcch-

IIOIogies :ire targeted to the plx)blenls IJlllt

give li_" to StlCh a disproportionate distri-

litltiillt O|" soft_¢,lrc COSTS. Tiitix, if rcwersc

_21tgiileerilig Silcceeds, tile totltl _fsleili ex-

pense ntay be reduced/Iniligated, or

grt-ater _thie iilli_-b_ added to ctlrreiit ef-

forts, bode of which represent desirable

outcomes, especially if one quantifies the

kwel of dollars Sl-_nt. Rever_" engineering

may need to only re:dize a sin:ill inipact to

generate sizable mivings."

Scacchi also i_litl_,d _it dlat "software

forward engineering and reverse engi-

neering are not separate concerns, and

thus should be viewed as opportunity for

convergence and complement, as well as

an expansion of the repertoire of tools

and techniques that should be available to

the modern software engineer. I, for one,

believe that the next generation of soft-

ware-engineering technologies will be ap-

plicable in both tile forward and reverse

directions. Such a view also may therefore

imply yet another channel for getting ad-

vanced software-environment/CASE

technologies into more people's hands-

_'II them on reverse engineering Chased
on ctlrl'Cllt s¢lftwiue-ln:lintellallCC c(isl

liilttt'lllS) ItS it _tlly to then intlOducc bcl it'r

forward Cllgincerillg iool._ alld Icch-

niques."

e have tried to provide a liallle-

work for exalnining revel._e-_li-

ineering tedulologies by s_n-

thesizing the "basic definitions of related

terms and identifying common objectivc.'s.

Reverse engineering is rapidly Ix:com-

ing a recogmized and intportant COmlX)-
nent of future CASE environments. Ik'-

cause die entire life cycle is naturally it

iteradve activity, reverse-engineering tools

can provide a major link in the overall

process of development and mainte-

nance. As these tools mature, they _ll be

applied to artifacts in all phases of the life

cycle. They will be a perlnallent part of the

process, ultiinately used to verify all coin-

pleted systems against their intended de-

signs, even with fully automated genera-
lion.

Reverse engineering, nsed with evok'ing

soft_lre develol)nlent technol(gies, _411

provide significant incl'ClllClii;ll cilhancc-

lilt'IllS ll) 01.II +itroductix4t) ,. ,:,
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Control Structure Diagrams for Ada

James H. Cross II

Auburn University
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ABSTRACT

The Control Structure Diagram (CSD) is a graphical notation intended to increase

the comprehensibility of software written in block-structured languages such as Ada, Pascal.

and Modula 2, or their associated PDLs. Tile CSD provides for the explicit depiction c_l

control constructs and control flow by extending the traditional textual representation of

PDL or source code with intuitive graphical constructs which are easily adapted to a specific

language or PDL. The CSD can be used as a natural extension to popular architectural

level representations such as data flow diagrams, Booch diagrams, and structure charts.

The CSD coT'tstr_cts for Ada are described in the context of a simple task example. The

CSD is currently supported by a fully operational prototype graphical prettyprinte_r.

I n t rod u et ion

Advances in hardware, particularly high-density bit-mapped monitors, have led m :,

renewed interest in graphical representation of software. Much of the research activity in

the area of software visualization and computer-aided software engineering (CASE) tc_ols

has focused on architectural-level charts and diagranls. I-{owever, the complex rlatur¢ o1

the control constructs and the subsequent control flow defined by program design languages

(PDL.s), which are based on programming languages such as Ada, Pascal, and Modula 2.



make detailed design specifications attractive candidates for graphical representation. And

since the source code itself will be read many times during the course of initial

development, testing and maintenance, it too should benefit from the use of an appropriate

graphical notation. The control structure diagram (CSD) is a notation intended specifically

for the graphical representation of detailed designs as well as actual source code. The

primary purpose of the CSD is to reduce the time required to comprehend software by

clearly depicting the control constructs and control flow at all relevant levels of abstraction,

whether at the design level or within the source code itself. The CSD is a natural extension

to existing architectural graphical representations st, ch as data flow diagrams, structure

charts, and Booch diagrams.

The CSD, which was initially created for Pascal/PDL [1], has been extended :

significantly so that the graphical constructs of the CSD map directly to the constructs of

Ada. The rich set of control constructs in Aria (e.g. task rendezvous) and the wide

acceptance ntf Ada/PDL by the software engineering community as a detailed design

language made Aria a natural choice for the basis of a graphical notation. A major

objective in the philosophy that guided the development of the CSD was that the graphical

constructs supplement the code and/or PDL without disrupting their familiar appearance.

That is, the CSD should appear to be a natural extension to the Ada constructs and,

similarly, the Ada source code should appear to be a natural extension of the diagram.

This has resulted in a concise, compact graphical notation which attempts to combine time

best features of previous diagrams with those of well-established PDLs. A CSD generator

was developed to automate the process of producing the CSD from Ada source code.



Background

Graphical representations havelong beenrecognizedashaving an important impact

in communicating from the perspective of both the "writer" and the "reader." For software,

this includes communicating requirements between users and designers and communicating

design specifications between designers and implementors. However, there are additional

areas where the potential of graphical notations have not been fully exploited. These

include communicating the semantics of the actual implementation represented by the

source code to personnel for the purposes of testing and maintenance, each of which are

major resource sinks in the software life cycle. In particular, Shelby [2] found that code

reading was the most cost effective method of detecting errors during the verification

process when compared to functional testing and structural testing. And Standish [3]

reported that program understanding may represent as much as 90% of the cost of

maintenance. Hence, improved comprehension efficiency resulting from the integration of

graphical notations and source code could have a significant impact on the overall cost of

software production.

Since the flowchart was introduced in the mid-50's, numerous notations for

representing algorithms have been proposed and utilized. Several authors have published

notable books and papers that address the details of many of these [4, 5, 6]. Tripp, for

example, describes 18 distinct notations that have been introduced since 1977 and Aoyama

et.al, describes the popular diagrams used in Japan. In general, these diagrams have been

strongly influenced by structured programming and thus contain control constructs for

sequence, selection, and iteration. In addition, several contain explicit EXIT structures to

allow single entry / multiple exit control flow through a block of code, as well as



PARALLEL or concurrency constructs. However, none the diagrams cited explicitly

contains all of the control constructs found in Ada.

Graphical notations for representing software at the algorithmic level have been

neglected, for the most part, by businessand industry in the U.S. in favor of non-graphical

PDL. A lack of automated support and the results of several studies conducted in the

noseventies which found

represented by flowcharts

underutilization.

significant difference in the comprehension of algorithms

and pseudo-code [7] have been a major factors in this

However, automation is now available in the form of numerous CASE

tools and recent empirical studies reported by Aoyami [6] and Scanlan [8] have concluded

that graphical notations may indeed improve the comprehensibility and overall productivity

of software. Scanlan's study involved a well-controlled experiment in which deeply nested

if-then-else constructs, represented in structured flowcharts and pseudo-code, were read by

intermediate-level students. Scores for the flowchart were significantly higher than those

of the PD_. -The statistical studies reported by Aoyami et.al, involved several tree-

structured diagrams (e.g., PAD, YACC II, and SPD) widely used in Japan whfch, in

combination with their environments, have led to significant gains in productivity. The

results of these recent studies suggest that the use of a graphical notation with appropriate

automated support for Ada/PDL and Ada should provide significant increases productivity

over current non-graphical approaches.
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The Control Structure Diagram Illustrated

Figure 1 (a) contains an Ada task body CONTROLLER adapted from [9], which

loops through a priority list attempting to accept selectively a REQUEST with priority P.

Upon on acceptance, some action is taken, followed by an exit from the priority list loop

to restart the loop with the first priority. In typical Ada task fashion, the priority list loop

is contained in an outer infinite loop. This short example contains two threads of control:

the rendezvous, which enters and exists at the accept statement, and the thread within the

task body. In addition, the priority list loop contains two exits: the normal exit at the

beginning of the loop when the priority list has been exhausted, and an explicit exit invoked

within the select statement. While the concurrency and multiple exits are useful in

modeling the solution, they do increase the effort required of the reader to comprehend

the code.

Figure 1 (b) shows the corresponding CSD generated by the graphical prettyprinter.

In this exan_le,-the intuitive graphical constructs of the CSD clearly depict the point of

rendezvous, the two nested loops, the select statement guarding the accept statement for

the task, the unconditional exit from the inner loop, and the overall control flow of the task.

When reading the code without the diagram, as shown in Figure 1 (a), the control

constructs and control paths are much less visible although the same structural and control

information is available. As additional levels of nesting and increased physical separation

of sequential components occur in code, the visibility of control constructs and control paths

becomes increasingly obscure, and the effort required of the reader dramatically increases

in the absence of the CSD.



Now that the CSD has been briefly introduced, the various CSD constructs for Ada

are presented in Figures 2. Since the CSD is designed to supplement the semantics of the

underlying Ada, each of the CSD constructs is self-explanatory and are presented without

further description.

Automated Support -- The CSD Graphical Prettyprinter

Automated support is a requirement, at least in the in professional ranks, for

widespread utilization of any graphical representation. Without automated support,

diagrams are difficult to construct and maintain from the standpoint of "living" formal

documentation, although software practitioners may use several types of diagrams informally

during design and even implementation. Automated support comes in many forms ranging

from general purpose "drawing aids" to automatic generation and maintenance based on

changes to source code. The CSD for Ada is currently supported by an operational

prototype g_plifcal prettyprinter which accepts Ada source code as input and generates the

CSD in a manner similar to text-based prettyprinters. The prototype was implemented-

under DEC's VAX VMS using a scanner/parser generator and an Ada grammar. The user

interface was built using DEC's VAX Curses, and to provide the user with interactive

viewing of the CSD, a special version of DEC's EVE editor was generated. Custom fonts

for the CSD graphics characters were built for both the VT220 terminal and the HP Laser

Jet printer. Using font-oriented graphics characters diagrams rather than bit-mapped

images provided for a high degree of efficiency in generating the diagrams. The prototype

is currently being ported to the Sun-4 workstation under UNIX and X Windows, where

enhancements will include an option to collapse the diagram around any control constructs
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and an option to generate an intermediate level architectural diagram which indicates

control structure among subprograms and tasks.

Conclusions and Future Directions

A new graphical tool which maps directly to Ada was formally defined and

automated. The CSD offers advantages over previously available diagrams in that it is

combines the best features PDL and code with simple intuitive graphical constructs. The

potential of the CSD can be best realized during detailed design, implementation,

verification and maintenance. The CSD can be used as a natural extension to popular

architectural level representations such as data flow diagrams, Booch diagrams, and

structure charts.

Our current reverse engineering project, GRASP/Aria [10], is focused on the

generation of multi-level and multi-view graphical representations from Ada source code.

As indicated_ GRASP/Ada overview shown in Figure 3, the CSD represents the code/PDL

level diagram generated by the system. Our present efforts are concentrated on the

extraction of architectural and system level diagrams such as structure charts, Booch

diagrams, and data flow diagrams. The reverse engineering of graphical representations is

destined to become an integral component of CASE tools, which until recently have focused

on forward engineering. The development of tools that provide for interactive automatic

updating of charts and diagrams will serve to improve the overall comprehensibility of

software and, as a result, improve reliability and reduce the cost of software.
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task CONTROLLER is

entry REQUEST (PRIORITY)

end;

(D :DATA) ;

task body CONTROLLER is

begin

loop

for P in PRIORITY loop

select

accept REQUEST(P) (D:DATA) do

ACTION (D) ;

end;

exit;

else

null;

end select;

end loop;

end loop;

end CONTROLLER;

Figure l(a). Ada Source Code for Task CONTROLLER.



task CONTROLLER is

entry REQUEST(PRIORITY)
end;

(D :DATA) ;

task body CONTROLLER is

begin

-- loop

-- for P in PRIORITY loop

---_ select

---/accept REQUEST(P)
/
!

, _ ACTION (D) ;

i Lend;

! -- exit;
{

'null;

end select;

end loop;

end loop;

end CONTROLLER;

(D:DATA) do

Figure l(b). Control Structure Diagram of Ada Source Code for Task CONTROLLER.



_b- b

-- PROCEDURE

procedure X is

r
'begin

S;

S;

S;

S;

.end X;

-- PACKAGE

package Y is

I procedure Z;

function Z return Boolean

.end Y;

-- SEQUENCE

S;

S;

S;

-- SELECTION

S;

if C then

S;

S;

end if;

Eigure 2. Control Structure Diagram Constructs For Ada.



-- CASE

S;

_ase D is

I Q---q when C1 =>

L C_--q[when C2 =>

S;

end case;

S;

-- FOR

S;

drSF in

S;

R loop

-- WHILE

S;

hdile C loop

S;

S;

S;

loop;
S;

Figur_ 2 (continued). Control Structure Diagram Constructs For Ada.



-- INFINITE LOOP

S;

S;

S;
S;

loop;
S;

-- LOOP EXIT

-- S;

loop

S;

exit when C;

-- S;

end loop;

S;

-- BLOCK

]begin
S;

S;

S;

S;

-- BLOCK WITH DECLARATIONS

S;

-- declare

C : INTEGER;

begin

-- S;

-- S;

S;

.end;

S;

Figure 2 (continued). Control Structure Diagram Constructs For Aria.



-- GO TO

<<L>>

S;

goto L;

-- RAISE

S;

• -- raise Err;

-- EXCEPTION HANDLER

S;

S;

S;

exception

--< when Errl =>

S;

4 when Err2 =>

-- S;

@when Err3 =>

i s;

end;

Figure 2 (continued). Control Structure Diagram Constructs For Ada.



-- TASK SPECIFICATION

task Y;

task body Y is

e_n egin

S;
S;

d;

-- RENDEZVOUS

S;

--_7/accept

s;

S;

(RECEIVER)

C do

-- TI

4--

:RMINATE ALTERNATIVE

-- S;

- select

/accept F do

or

{rmi_-nate;

end select;

S;

Figure 2 (continued). Control Structure Diagram Constructs For Ada.



-- SELECT

S;

- select

4---

¢

-/accept I do

[end s;

or

-/accept J do

end;

else
S;

end select;

-- GUARDED SELECT

S;

--] select

hen C1 =>"1 7
,-_ i_-/a_e_t _ _o

ten__
S;

or

_] when C2 =>

e_nCCept N do

L

end select;

Figure 2 (continued). Control Structure Diagram Constructs For Ada.



-- ABORT

task body P is

begin
-- $7

---//abort P;

.end;

Figure 2 (continued). Control Structure Diagram Constructs For Ada.
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Figure 3. Overview of the GRASP/Ada Reverse Engineering Project.


